This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Error Detection and Correction in SRAM Emulated TCAMs

Pedro Reviriego™, Salvatore Pontarelli, and Anees Ullah

Abstract— Ternary content addressable memories (TCAMs) are widely
used in network devices to implement packet classification. They are
used, for example, for packet forwarding, for security, and to implement
software-defined networks (SDNs). TCAMs are commonly implemented
as standalone devices or as an intellectual property block that is
integrated on networking application-specific integrated circuits. On the
other hand, field-programmable gate arrays (FPGAs) do not include
TCAM blocks. However, the flexibility of FPGAs makes them attractive
for SDN implementations, and most FPGA vendors provide development
kits for SDN. Those need to support TCAM functionality and, therefore,
there is a need to emulate TCAMs using the logic blocks available in
the FPGA. In recent years, a number of schemes to emulate TCAMs on
FPGAs have been proposed. Some of them take advantage of the large
number of memory blocks available inside modern FPGAs to use them
to implement TCAMs. A problem when using memories is that they can
be affected by soft errors that corrupt the stored bits. The memories
can be protected with a parity check to detect errors or with an error
correction code to correct them, but this requires additional memory bits
per word. In this brief, the protection of the memories used to emulate
TCAMs is considered. In particular, it is shown that by exploiting the
fact that only a subset of the possible memory contents are valid, most
single-bit errors can be corrected when the memories are protected with
a parity bit.

Index Terms—Field-programmable gate arrays (FPGA), soft
errors, ternary content addressable memories (TCAM).

I. INTRODUCTION

Soft errors are a major concern for modern electronic circuits and,
in particular, for memories [1]. A soft error can change the contents
of the bits stored in a memory and cause a system failure. The soft
error rate in terrestrial applications is low. For example, in [2], it was
estimated that for a 65-nm static random access memory (SRAM)
memory, the bit error rate was on the order of 102 errors per
year. That would translate to only one error per year for a system
that uses 1 Gbit of memory. However, even such a low error rate
is a big concern for critical applications such as communication
networks on which the network elements such as routers have to
provide a high level of reliability and availability. Therefore, soft
errors are an important issue when designing routers or other network
elements, and manufacturers take them into account and incorporate
error mitigation techniques [3], [4]. For example, error detection
and correction codes are commonly used to protect memories [5].
A parity bit can be added to each memory word to detect single-bit
errors, or a single-error correction (SEC) code can be used to correct
them. These codes require additional bits per word thus, increasing
the memory size and also some logic to write and read from the
memory. For example, for a 16-bit word, an SEC code requires 5 bits
while a parity check requires only one.

Manuscript received April 4, 2018; revised July 14, 2018 and
September 7, 2018; accepted October 12, 2018. (Corresponding author:
Pedro Reviriego.)

P. Reviriego was with Universidad Antonio de Nebrija, 28015 Madrid,
Spain. He is now with Universidad Carlos III de Madrid, 28911 Madrid,
Spain (e-mail: revirieg@it.uc3m.es).

S. Pontarelli is with Consorzio Nazionale Interuniversitario per le Teleco-
municazioni, 00133 Rome, Italy (e-mail: salvatore.pontarelli@uniroma?2.it).

A. Ullah is with the Sir Syed CASE Institute of Technology,
Islamabad 44000, Pakistan (e-mail: anees.ullah@case.edu.pk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2018.2877131

Ternary content addressable memories (TCAMs) are a special
kind of content addressable memories [6] that support do not care
bits (commonly denoted as “x”) that match both a zero and a one.
TCAMs are widely used in networking applications to perform packet
classification [7]. They can be implemented as standalone devices
or integrated as part of networking application specific integrated
circuits (ASICs) [8]. The TCAM memory cells different from normal
SRAM cells, in which they check the incoming value for a match
to the stored value that can be for each bit 0, 1, or x. The results
from all the words are then sent to a priority encoder that returns
the match with the highest priority. This comparison and selection
logic introduces a significant overhead in terms of area and power
consumption relative to that of an SRAM memory. Protecting TCAMs
against soft errors is challenging as error correction codes (ECCs)
are not easily applicable because all words are checked in parallel.
This means that a decoder per word would be needed, which would
lead to a very large area and power overhead. A number of schemes
have been proposed to protect TCAMs that are based, for example,
on replicating part of the rules or on using other structures such as
Bloom filters to check the results of the TCAM searches [9], [10].

Field-programmable gate arrays (FPGAs) provide a flexible plat-
form to implement systems. In particular, they provide a vast amount
of logic and memory resources that can be configured to implement
a given functionality. This makes them attractive for networking
applications [11]. However, they do not include CAM or TCAM
blocks because FPGAs are also used in many applications that are not
related to networking. For binary CAMs that is not an issue as they
can be easily emulated using cuckoo hashing and RAM memories
with a small cost overhead [8]. TCAMs are also emulated using the
logic and memory resources, but in this case, the overheads are much
larger (making emulation not competitive for ASIC implementations).
To emulate the TCAMs in FPGAs, a number of schemes have been
proposed in the literature [12]-[16]. Some of them implement the
TCAM memory cells with FPGA flip-flops and logic [12]. This
approach has limited scalability in terms of the TCAM size, and
therefore, schemes based on using the SRAM memories embedded
in the FPGA [13]-[16] are preferred and implemented by FPGA
vendors [17].

When SRAM memories are used to implement a TCAM, a large
number of bits are used for each TCAM cell. For example, in [13],
it has been shown that more than 55 bits of the Xilinx FPGAs block
RAMs (BRAMs) are needed for each single TCAM bit. In case of
distributed RAMs, 6 bits are needed for each TCAM bit.

This means that a large number of memory bits are used and thus
the probability of suffering soft errors increases. To protect them,
ECCs can be used, but as discussed before, they add additional
memory overhead [18]. For TCAMs that are emulated using logic
and flip-flops, protection can be implemented by using triple modular
redundancy that triplicates the flip—flops and adds voting logic to
correct errors, thus requiring a large resource overhead.

In this brief, it is shown that the specificity of the contents
stored in memories used to emulate TCAMs can be exploited
to implement an efficient error correction method. In particular,
when memories are protected with a parity bit to detect single-bit
errors, the proposed scheme will be able to correct most of the
single-bit errors. This makes the technique attractive to improve the

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2540-5234
https://orcid.org/0000-0002-3626-6404

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
address 1y r; rz Iy address ry r; ry Iy
000 000
001 001
K - 010 ri: 000xxx
e f, 2dre=s r: 00x011
ks 011 kz—> o011 r3: 1xx100
ke 100 L » 100 ra: not used
5 K
101 101
110 110
111 11
| match ry
\;->match ry
\;-_match r
_.7match r
Fig. 1. Example of a TCAM with 6-bit keys and four rules emulated using
two SRAMs.

reliability of FPGA-based TCAM implementations without incurring
large overheads in resource usage. In more detail, the proposed
implementation reduces the FPGA slices required for protection by
at least 50% when compared to an SEC protection for common
TCAM sizes.

This brief is organized as follows. Section II discusses FPGA-based
TCAM implementations. The proposed error correction scheme is
presented in Section III and evaluated in Section IV. Finally, the con-
clusions are summarized in Section V.

1I. FPGA-BASED TCAM IMPLEMENTATIONS

There are two main alternatives to implement TCAMs on FPGAs.
The first one is to use the FPGA logic resources and flip-flops to
implement the TCAM cells and match lines. The second is to use
the block memories inside the FPGA [13].

In the first alternative, the bits of the rules are stored in flip-flops.
As discussed before, each bit can take three possible values: 0, 1,
and x. For example, a flip-flop can be used to store if the bit is
0 or 1 and another flip-flop that acts as a mask and is set when the
bit is do not care [12]. Then, the programmable logic can be used
to implement the comparison against the key. This alternative uses
many resources per rule and, therefore, cannot be used to implement
large TCAMs with tens of thousands of rules of more than 100 bits
that operate at high speed.

The second alternative is based on the use of the embedded
memories available in the FPGA. To do so, the key is divided into
smaller blocks of b bits. Then, a rule can be emulated using a 1-bit
memory of 2b positions for each block. When searching for a key, all
the memories are accessed using the corresponding key bits and if all
the positions read have a one, a match is detected. In general, k rules
can be implemented by using a k — bit memory of 2b positions for
each block. This is best illustrated with an example. Let us consider
a key of 6 bits that is divided into two blocks of 3 bits. Then,
a TCAM with four rules can be implemented as shown in Fig. 1.
It can be observed that the memories have 23 = 8 positions and a
width of 4 bits. The leftmost memory is accessed using the upper
3 bits of the key and the other with the lower three. Those bits are
used to determine the address of the position read from the memory.
The rules stored in each bit are also shown in Fig. 1. Let us consider
a search for key: 000011. We would access the first position (address
000) on the leftmost memory reading 1100 and the four position
(address 011) on the other memory reading 1100. After performing
AND there would be a match only for rules r; and rp. Looking now
at the rules, it can be observed that rules that are not used (r4) have
zeros in all the memories and positions. For the rest of the rules,
the number of ones in a given memory depends on the number of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

000xxx
r,: 00x011
r3: 1xx100
rz: not used

ri:
address
[
= i
ks
—>
Ke

K address
L
ka
—
ks

error

match ry

match rs

match r,

- match ry

Fig. 2. Parity protected TCAM with 6-bit keys and four rules emulated using
two SRAMs.

x bits that the rule has on the key bits used as addresses on that
memory. When there are no x bits, only one position has a one,
when there is one x bit, two positions have a one, when there are
two x bits, four positions have a one, and so on. In general, if there
are ny bits that are x, there will be 2" ones on the memory.

Considering now the implementation cost, since each block stores
b bits of a rule and requires 2% bits of SRAM memory. The cost in
SRAM bits per TCAM bit in this scheme is 2b /b [13]. Therefore,
it would seem that smaller values of b are more efficient. However,
this is not entirely true as the logic needed to combine the blocks
together increases with the number of blocks. It should also be
mentioned that a large physical memory can be split into several
blocks so that each one implements b bits of a rule. Then, several
memory accesses are needed to complete a search operation, this can
be mitigated by operating the memory at a larger speed or using
multiport memories [16].

For Xilinx FPGAs, there are two types of memory resources:
lookup table random access memories (LUTRAMs) and BRAMs.
The first ones are built with the same lookup tables (LUTs) that
are used to implement the logic and are generally small with 32 or
64 positions. On the other hand, BRAMs are larger having 36 K bits
that can be configured with different word sizes, the largest being
72 bits that corresponds to 512 positions. Therefore, LUTRAMSs have
a much lower cost per bit (2°/5) than BRAMs (2°/9). However,
the total number of memory bits available is larger for BRAMs than
for LUTRAMs.

A key observation for the protection of the SRAM-based TCAM
implementations is that the contents of the SRAMs are determined
by the rules stored and that only a few combinations of all possible
values are used. This means that the SRAM contents have an intrinsic
redundancy that could potentially be used to protect the memories.
This idea is explored in the rest of this brief.

III. ERROR DETECTION AND CORRECTION
IN SRAM-BASED TCAMS

The scheme proposed to protect the memories used to emulate the
TCAM uses a per word parity bit to detect single-bit errors. Then,
once an error is detected, the intrinsic redundancy of the memory
contents is used to try to correct the error. The implementation of
the parity protection is shown in Fig. 2 where p corresponds to
the parity bit. It can be seen that in addition to the match signal,
an error signal is generated when there is a mismatch between the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

ri: 000xxx
Ka address ks address r;: 00x011
kH k4> r3: 1xx100
55 2 r,: not used

Ke

e; —

error

match ry

match rs

match r,

- match ry

Fig. 3. Examples of single-bit errors on a parity protected TCAM with 6-bit
keys and four rules emulated using two SRAMs.

stored parity and the recomputed one. This is a standard parity
protection that can detect all single-bit errors [S]. Detecting the
error on every access is crucial to avoid incorrect results on search
operations.

Let us now assume that a single-bit error has occurred on a
given word and that it is detected with the parity check. Upon error
detection, we can check the contents of the memory to try to correct
the error. A first attempt could be to read all the words in the memory
and count the number of positions that have a one for each rule. Let
us denote that number as the weight of the rule in that memory. For
example, in the leftmost memory of Fig. 2, r{ would have a weight
of 1, rp of 2, and r3 of 4. This can help us identify the erroneous bit
as the weight for an error-free rule can only be 0, 1, 2, 4, and 8 for an
8-position memory. To further discuss the error correction process,
let us focus on the examples of single-bit errors shown in Fig. 3.
For example, e3 affects r3 on the leftmost memory by changing its
weight from 4 to 3. Since 3 is not a valid value, after detecting the
parity error, we would identify that the erroneous bit is that in r3
and we would correct it. This approach would be effective for rules
that have a weight larger than two, i.e., they have two or more “x”
bits on the key bits that correspond to that memory. On the other
hand, for rules with a lower weight, checking the weight alone may
not be enough. Let us now consider a rule with weight two. Then,
an error that changes a zero to a one will change the weight to three
and the error will be corrected. However, when a one is changed to
a zero (as in ep), then the new weight would be one that is a valid
value and the error cannot be corrected. This, however, is less likely
to occur as only 2 positions have a one. If we now consider a weight
one rule, an error that sets another bit to one would produce a weight
of two that is also valid. However, not all weight two combinations
are possible. This is clearly seen when looking at e4. In that case,
the values of r, that are one would correspond to key values 000 and
011 and those do not correspond to a valid rule. In general, only
positions that correspond to key values that are at distance one from
the original value will not be detected. On the other hand, an error
that sets to zero the position that was one in a weight one rule can
be corrected by checking if the rule has zero weight on the other
memories. If that is the case, then the rule is disabled and the bit is
not in error. Otherwise, the rule had a weight of one and the error
is corrected. Finally, an error in a rule that had a weight of zero can
also be corrected by checking the weight of the rule on the other
memories.

TABLE I

PERCENTAGE OF CORRECTABLE SINGLE-ERROR PATTERNS
FOR COLUMNS OF DIFFERENT WEIGHTS

Weight Coverage

0 100

1 100 - (1 — b/2%)

2 100 - (1 —2/2%)

>4 100
TABLE II

PERCENTAGE OF CORRECTABLE SINGLE-ERROR
PATTERNS FOR BLOCK MEMORIES

Weight / b 5 6 7 8 9

0 100 100 100 100 100
1 844 906 945 969 982
2 938 969 984 992 99.6
>4 100 100 100 100 100

The previous discussion shows that by using the intrinsic redun-
dancy of the memory contents, many single-bit error patterns could be
corrected. Let us now quantify the fraction of single-bit error patterns
that can be corrected for each weight in a memory of 2b positions.

1) Weight zero: all patterns can be corrected.

2) Weight one: all except those that set a bit to one for a position
with an address at distance one, this corresponds to 1 — b/2b.

3) Weight two: all patterns can be corrected except the two that
set a position with a one to a zero, this corresponds to 1 —2/2b .

4) Weight four or larger: all patterns can be corrected.

It can be seen that most of the error patterns are corrected. This
is better seen in Table I that illustrates the percentage of correctable
patterns for columns of different weights. The only cases where not
all errors can be corrected are weight one and two, and for those,
the percentage will approach 100% when b is large. The percentage
of errors that can be corrected for different values of b is shown
in Table II. It can be seen that even for small memories (b = 5
corresponds to 32 positions), the error coverage is close to 90% in the
worst case. For larger memories, the coverage is over 95% and gets
close to 100%. For example, for b = 9, the coverage is over 98% in
the worst case. This shows the effectiveness of the proposed scheme
in correcting single bit errors when the memories are protected with
a parity bit.

The pseudocode of the proposed correction algorithm is shown
in Algorithm 1. The process starts when a parity error is detected
when reading a word from a block memory. To correct the error,
we need to identify the bit (or column) affected by the error. To do
so, in the first phase, all the positions in the block are read and
the column weights are computed by adding the ones seen in each
column. Then, the second phase checks different cases for the column
weight to try to identify the erroneous column. If that occurs, the bit
of that column in the word that had the parity error is the erroneous
bit and it is corrected. In the algorithm, this second phase starts by
checking if there is a column that has an illegal weight. As discussed
before, the only valid column weights are: 0, 1, 2 fori = 1,2,....b.
Therefore, if a column has, for example, weight three, then it is the
erroneous one. If the erroneous bit is found, it is corrected and the
process ends. Otherwise, we proceed to check columns that have
zero weight. Those should correspond to TCAM entries that are not
used and should have zero weight on all the other memory blocks.
Therefore, we check if they have also zero weight on another block.
If not, the error has been found and it is corrected. If all the columns
with zero weight have also weight zero on another block, we proceed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 Proposed Algorithm for Error Correction

Require: Parity error detected in a memory word
1: Read memory and compute column weights

2: if there is a column with illegal weight then
3: Correct that bit on the erroneous word

4 return error corrected

5. end if

6: if there are columns with zero weight then

7: Read another memory

8: Compute the weights of those columns

9: if any has a non zero weight on the other memory then
10: Correct that bit on the erroneous word
11: return error corrected

12: end if

13: end if

14: if there are columns with weight one then

15: Read another memory

16: Compute the weights of those columns

17: if any has zero weight on the other memory then
18: Correct that bit on the erroneous word
19: return error corrected
20: end if
21: end if
22: if there are columns with weight two then
23: Read the memory
24: Check the patterns of those columns
25: if any has an illegal pattern then
26: Correct that bit on the erroneous word
27: return error corrected
28: end if
29: end if
30: return uncorrected error

to check columns of weight one. For that, we check if they have zero
weight on another block. If that is the case, that column is the one
that suffered the error and we correct it. If not, we proceed to the last
step in which columns of weight two are checked. To do that, the two
addresses of the two positions that contain a one are XORed. If the
result has more than a one, the column has suffered an error and we
correct it. If that does not happen, then we have suffered one of the
few errors that are not correctable. The overall process can easily be
implemented in a soft processor that is present in many FPGA-based
networking applications to manage the control functions [11].

IV. EVALUATION

To evaluate the benefits of the proposed scheme, it has been
implemented using Vivado Design Suite 2016.3 in a Xilinx Artix-7
xc7al00tcsg324 FPGA that is part of a Nexys4 double data rate
board. Both distributed memory (LUTRAMSs) and BRAMs imple-
mentations are considered. In both cases, the memory sizes that
minimize the memory bits needed per TCAM bit are used. This cor-
responds to a configuration of 32 positions LUTRAMs corresponding
to five key bits per memory, and for the second option, the BRAM
is configured as 512 positions of 72 bits. The soft error coverage
of the proposed technique for each option corresponds to the first
and last columns of Table II. Similarly, if the memory blocks were
split into several smaller logical blocks the soft error coverage could
be checked in Table II. The unprotected memory (Fig. 1) and the
memory protected with an SEC code have also been implemented for
comparison. The protection with an SEC code is illustrated in Fig. 4.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

fi N 3 Py

P2 P3

L r 3 rfy P1 p2 P3

riz 000xxx
50 00x011
ry: 1xx100
rs: not used

match rq

match rz

match r,

match ry

I

Fig. 4. SEC protected TCAM with 6-bit keys and four rules emulated using
two SRAMs.

TABLE III

RESOURCE UTILIZATION AND DELAY OF A TCAM EMULATED
USING DISTRIBUTED MEMORY ON XILINX ARTIX-7 FPGA

Rules x Width Technique LUTs LUTRAMs Slices Delay
64x40 Unprotected 704 512 179 19.26
64x40 Proposed 786 520 255 19.92
64x40 SEC 1232 568 498 21.70

512x40 Unprotected 5613 4096 1500 28.37
512x40 Proposed 6449 4104 1830 31.03
512x40 SEC 13077 4176 3656 47.34
1024x40 Unprotected 11149 8192 2997 41.03
1024x40 Proposed 12837 8200 3595 47.75
1024x40 SEC 27308 8280 7258 57.32
2048x40 Unprotected 17692 16384 4439 72.67
2048x40 Proposed 21258 16392 6811 73.40
2048x40 SEC 46811 16472 12666 78.88
TABLE IV

RESOURCE UTILIZATION AND DELAY OF A TCAM EMULATED
USING BRAM MEMORY ON XILINX ARTIX-7 FPGA

Rules x Width Technique LUTs BRAMs Slices Delay
64x40 Unprotected 128 5 40 10.33
64x40 Proposed 219 5 71 14.46
64x40 SEC 1218 5 342 18.40
512x40 Unprotected 512 38 165 17.20
512x40 Proposed 1028 38 342 19.83
512x40 SEC 4807 38 1534 29.25

1024x40 Unprotected 1027 73 339 36.88
1024x40 Proposed 2055 73 694 38.68
1024x40 SEC 11083 73 3533 40.05
2048x40 Unprotected ~ 8193 135 2470 73.06
2048x40 Proposed 10253 135 3174 74.98
2048x40 SEC 23548 135 6951 73.00

It can be observed that additional parity bits and an SEC decoder
are needed on each memory block to correct the errors. The number
of additional bits will depend on the number of rules, for example,
6 bits are needed for a 32-bit word (rules) and 7 bits for a 64-bit
word (rules).

The FPGA resources needed and the delay in nanoseconds for the
three options are shown in Table III for the LUTRAM implementation
and in Table IV for the BRAM implementation. In both cases,
TCAMs of with 40-bit keys and 64, 512, 1024, and 2048 rules
are considered. As discussed before, the LUTRAMs correspond to
a 32 x 1 memory that is accessed using 5 bits of the keys.
Therefore, 8 memories are required to process the 40 bits of the key.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

For BRAMs, each memory has 512 positions that can cover 9 bits
of the key, and therefore, only five memories are needed. From the
results in Table III, it can be seen that the proposed scheme reduces by
more than half the amount of resources needed both in terms of LUTs
used for logic and slices compared to an SEC protection, The same
observation holds for LUTs and slices in Table IV with even larger
reductions. In the case of LUTRAMs and BRAMs, the reductions
are lower. This can be explained as the number of parity check bits
needed to implement SEC is not large, and additionally, for BRAMs,
they have a 72-bit width so that in all cases there are spare bits
that can be used for the parity check bits. Another advantage of the
proposed scheme is that it has a lower impact on delay than the use
of SEC protection. Finally, it is interesting to relate the resources
used with those available in the FPGA. In more detail, the device
used has 63400 LUTs of which only 19000 can be configured as
LUTRAMs and 135 BRAMs. This means that a 2048 x 40 TCAM
uses almost all LUTRAMs in the LUTRAM implementation whereas
in the case of BRAMs, all BRAMs are used and part of the memory
blocks need to be emulated using LUTRAMSs. In both cases, an SEC
protected implementation leaves much fewer LUTSs to implement the
rest of the system than the proposed scheme.

In summary, the proposed scheme can be an interesting option
to improve the protection of the memories used to emulate TCAMs
on FPGAs. However, it should be noted that the proposed technique
does not correct all single-bit errors and that it requires some overhead
in the software controller of the TCAM to perform correction once an
error is detected. Therefore, whether to use it or not will depend on
the design requirements in terms of reliability and on the resources
available.

V. CONCLUSION

In this brief, a technique to protect the SRAMs used to emulate
TCAMs on FPGAs has been proposed. The scheme is based on the
observation that not all values are possible in those SRAMs, and
thus, there is some intrinsic redundancy of the memory contents. This
redundancy is used to correct most single-bit error patterns when the
memories are protected with a parity bit to detect errors. The proposed
technique reduces significantly the resources needed to protect the
memories and can be an interesting option for designs on which
reliability is a concern but resources are limited.

The idea presented in this brief can be extended to other memory
configurations. For example, it can be used to detect errors on an
unprotected memory by periodically scrubbing the contents to check
their correctness. It could also be used when the memory is protected
with a more powerful code that can detect several bit errors to correct
multiple bit errors. For example, for a memory protected with an
SEC code, double-bit error patterns could be detected and then use
the intrinsic redundancy of the memory contents to correct them.

[1]

[2]

[3]

[4

=

[5]

[6]

[7]

[8]

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu, Dependability in
Electronic Systems: Mitigation of Hardware Failures, Soft Errors, and
Electro-Magnetic Disturbances. New York, NY, USA: Springer-Verlag,
2010.

J. L. Autran er al, “Soft-errors induced by terrestrial neutrons
and natural alpha-particle emitters in advanced memory circuits at
ground level,” Microelectron. Rel., vol. 50, no. 9, pp. 1822-1831,
Sep. 2010.

A. L. Silburt, A. Evans, I. Perryman, S. J. Wen, and D. Alexandrescu,
“Design for soft error resiliency in Internet core routers,” IEEE Trans.
Nucl. Sci., vol. 56, no. 6, pp. 3551-3555, Dec. 2009.

A. Evans, S.-J. Wen, and M. Nicolaidis, “Case study of SEU effects in a
network processor,” in Proc. IEEE Workshop Silicon Errors Logic-Syst.
Effects (SELSE), Mar. 2012, pp. 1-7.

C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124-134, Mar. 1984.

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE J.
Solid-State Circuits, vol. 41, no. 3, pp. 712-727, Mar. 2006.

F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch packet
classification and lookup with TCAM,” IEEE Micro, vol. 25, no. 1,
pp- 50-59, Jan./Feb. 2005.

P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM SIG-
COMM, 2013, pp. 99-110.

I. Syafalni, T. Sasao, and X. Wen, “A method to detect bit flips in a
soft-error resilient TCAM,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 6, pp. 1185-1196, Jun. 2018.

S. Pontarelli, M. Ottavi, A. Evans, and S. Wen, “Error detection in
ternary CAMs using Bloom filters,” in Proc. Design, Automat. Test Eur.
Conf. Exhib. (DATE), Mar. 2013, pp. 1474-1479.

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32-41, Sep./Oct. 2014.

M. Irfan and Z. Ullah, “G-AETCAM: Gate-based area-efficient
ternary content-addressable memory on FPGA,” IEEE Access, vol. 5,
pp. 20785-20790, 2017.

W. Jiang, “Scalable ternary content addressable memory implementation
using FPGAs,” in Proc. ACM ANCS, San Jose, CA, USA, Oct. 2013,
pp. 71-82.

Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “E-TCAM: An efficient
SRAM-based architecture for TCAM,” Circuits, Syst., Signal Process.,
vol. 33, no. 10, pp. 3123-3144, Oct. 2014.

A. Ahmed, K. Park, and S. Baeg, “Resource-efficient SRAM-based

ternary content addressable memory,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 4, pp. 1583-1587,
Apr. 2017.

I. Ullah, Z. Ullah, and J.-A. Lee, “Efficient TCAM design based on
multipumping-enabled multiported SRAM on FPGA,” IEEE Access,
vol. 6, pp. 19940-19947, 2018.

Ternary Content Addressable Memory (TCAM) Search IP for SDNet:
SmartCORE IP Product Guide, PG190 (v1.0), Xilinx, San Jose, CA,
USA, Nov. 2017.

V. Gherman and M. Cartron, “Soft-error protection of TCAMs based
on ECCs and asymmetric SRAM cells,” Electron. Lett., vol. 50, no. 24,
pp- 1823-1824, 2014.

